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Abstract--The effect of air-flow on shockwaves is determined both experimentally and analytically. It is 
found that model observations conducted with pure water flows may be extended to prototype flow with 
an aerated flow, by accounting for the mixture shock number. These findings are supported by selected 
photographs relating to shocks at an abrupt wall deflection. Copyright © 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

Supercritical free surface flows are prone to shockwaves. Those surface waves originate from 
external disturbances, such as changes: 

• in the channel alignment away from the straight wall direction, 
• of  the bot tom geometry away from the plane invert, 
• of  discharge, i.e. either addition or reduction of  discharge, or 
• of  boundary roughness. 

Hydraulic jumps are a particular type of  shocks with a shock front perpendicular to the flow 
direction. The classical hydraulic jump is the basic jump type in a rectangular horizontal channel 
with an inviscid fluid. Both strong classical hydraulic jumps and shocks may break, resulting in 
a surface return flow with a considerable local air entrainment at the interface between forward 
bot tom and return surface flows. The significant difference between the classical hydraulic jump 
and the shockwave as considered here is energy dissipation. For  shockwaves, energy dissipation 
is negligible, whereas hydraulic jumps are applied as energy dissipators due to their intensive energy 
consumption. 

Chute flow that is originally undisturbed will remain invariant only in a straight and prismatic 
channel with a constant roughness and discharge. Such idealized conditions are often impossible 
due to boundary constraints. The basic disturbance of  supercritical flow, i.e. where the so-called 
Froude number  17 = V/c and V =  average velocity, and c = celerity is in excess of  unity 
corresponds to the abrupt  wall deflection. The abrupt wall deflection is amenable to analysis 
provided effects of  friction and bot tom slope are neglected. A detailed analysis is given below. 

The present project was conducted to obtain insight in a typical model effect. Whereas free 
surface flow in a prototype chute is usually aerated due to surface aeration, hydraulic models have 
usually flows, of  which the velocity is too small for incipient surface aeration. The question thus 
is how shockwaves behave under preaerated flow conditions. More specifically: are the heights of  
shockwaves in a prototype situation larger or smaller than the heights in the corresponding 
hydraulic model? Both, yes and no have some support. A height of  shockwave can be larger in 
the prototype because of  the mixture flow, and a shockwave is eventually damped by the presence 
of air, and thus may be lower in the prototype. The present study was undertaken to answer this 
question, based on previous observations of  shockwaves in pure water flow. The answer to the 
problem is so simple and significant at the same time that the results were considered worth 
publishing in the Journal. 
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Figure 1. Definition of flow across an abrupt wall deflection (a) plan, (b) side view. 

2. MIXTURE QUANTITIES 

The abrupt  wall deflection involves the basic configuration for a shockwave. Consider a 
homogeneous two-phase flow of  approach (index o) flow depth hom, approach density pom and 
approach velocity Vom. The flow is bounded by a straight wall that is deflected by the angle 0 at 
point O (figure 1). For  simplicity we consider a rectangular channel with a hydraulically smooth 
boundary and a horizontal channel containing an air-water flow where there is no slip of  the air 
bubbles. The roughness effect could be accounted for by a more complex formulation that is 
omitted for conciseness here (Reinauer 1995). Quantities relating to pure water are referred to with 
subscript w, and m indicates air-water  mixture parameters. 

Due to the wall deflection angle 0 a shock front of  shock angle/Y results, and quantities beyond 
the front are designated with subscript 1. The mechanism of a shock in one-phase flow is well 
understood, based on the continuity and the momentum equations parallel and perpendicular to 
the front (Ippen 1951). We ask as to how the shock formation is modified by the addition of  air 
to the water flow. 

With index a referring to air the mean air concentration C is defined as 

Q~ Oa 
c - Oa + Qw - Ore' [1] 

The mean mixture flow depth hm is related to the water flow depth 

hm = hw/(1 - C). [2] 
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Figure 2. Shock angle fl as a function of deflection angle 0 for various air concentrations C. (--) [14]. 
Fom = 5. 
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Figure 3. Mixture flow depth Ym as a function of (a) mixture approach shock number Som, (b) shock 

number So. ( ) Prediction according to [17], ( . . . .  ) first order approximation [15]. 
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With g as gravitational acceleration, and when accounting for pm = pw(1 - C) from [1] the 
bot tom pressure pm of a mixture flow is 

hw 
p m =  p~ghm = p,(1 - C)g (1 - C) - pwgh,. [3] 

The corresponding hydrostatic pressure force Pm ----- (1/2)pmhm is, therefore, 

hl 
Pm = Pwg 2(1 -- C)" [41 

This is in agreement with the result of  Herbrand (1969). 
The momentum M of  a mixture flow is Mr. = pr. VmQ,~. Assuming no relative velocity between 

air bubbles and water particles yields lAa = V, = V~ in a flow without pressure gradient. Because 
pr~ = pw(1 -- C) and Q~ = Q,/(1 - C) one has the simple result 

Mm -~ pw(l - C)V~ Qw (1 - C )  - p . V w Q w .  [5] 

The momentum of a mixture flow is thus equal to the momentum of the pure water flow of  equal 
velocity and discharge (Herbrand 1969). 

3. SHOCK EQUATIONS 

Consider figure 1 with a mixture approach flow (pro, Qm, horn) across a wall deflection. Beyond 
the shock front the quantities of  interest are the mixture flow depth him and the shock angle ft. 
Preliminary observations indicated that the velocity across a shock remains constant and this may 
also be substantiated with the asymptotic set of  equations by Ippen (Hager et al. 1994). 

When accounting for [4] and [5] the momentum equation normal (subscript n) to the shock front 
is 

hL hLC) ½Pwg (1 -- C) + p.how ~ .  = lpwg (1 - + pwh,w ~ . .  [6] 

From a vector diagram Vn can be related to the absolute value of velocity V both up- and 
downstream of  the shockfront (figure 1). Dividing by (p .g)  yields 

2 ([ - C) + ~ sin2 fl = 2 (1 - C) + ~w sin 2 (fl - 0). [7] 

Introducing Vo, =Vl t  in the tangential (subscript t) direction and the continuity equation 

Vo°ho~ = Vl.h,. [81 
gives further 
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sin(fl - 0) Vo how 
sin fl - V~ h,w " [9] 

The  mixture  F roude  number  in a rectangular  channel  is F m =  Vm/(ghm) 12 = [Vw/(ghw)~:2](1 - C) ~:2. 
Because of  the no-slip assumpt ion,  the depth  ratio Y = hL/ho is, with [7] 

1 + 2F2m sin2fl = Y~ + 2F~m Ym sin2(fl -- 0). [10] 

Using [9] to el iminate sin(fl - 0) = Y~ sin fl = Y~ sin fl gives 

1 + 2F2om sin: fl = Ym + 2F2om Y2, ' sin 2 ft. [11] 

By excluding the trivial solution Ym = 1 yields a quadrat ic  equat ion for Ym with the physically 
relevant  solution 

Ym = l[(1 + 8F2om sin: fl)~:2 _ l]. [12] 

F o r  large values o f  Fom sin fl this approx imates  as 

Ym = ~ F o m  sin fl -- ½, [13] 

in agreement  with previous results for  water  flow (Hager  1992). 
The  shock angle fl may  be obta ined f rom [9] and [13] when eliminating Ym. Fo r  small angles 

sin fl _-__ fl, and 

3 1 
fl - 0 = ~ -  [14] 

2 ~ F o m  - -  Fom " 

Insert ing this result back into [13] yields to the same order  

Ym = 1 - } - ~ 0 F  .... [15] 

Equat ions  [14] and [15] are the basic equat ions for supercritical flow across an abrup t  wall 
deflection. They  are, at least to lowest order  of  approx imat ion ,  exactly identical with the water  flow 
equat ions,  except that  Y---, Ym and Fo---~Fom. The  height o f  shock is increasing linearly with the 
deflection angle 0, and the mixture  F roude  n umber  Fore. Based on this simple result, Hage r  et al. 
(1994) in t roduced the approach shock number So. Fo r  mixture flow, one m a y  extend its definition 
a s  

So~ = OFom. [161 

The rat io of  mixture  shock flow depth  to mixture  approach  flow depth  thus depends exclusively 
on the mixture shock number Som. Also, the shock angle ratio a = ( f l / O ) -  1 = (Som) l depends 
exclusively on Som. Figure 2 shows the solution for  the shock angle fl as a function o f  0 for var ious 
air concentra t ions  C, according to the full equat ion [9]. Also plot ted is the approx ima t ion  [14] for  
C = 0, and C = 0.75, and both  are valid up to 0 = 0.25, cor responding to 0 = 14 °. Such a deflection 
angle is known to be rather  large and at the upper  limit o f  engineering application.  
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Figure 4. (a) Shock front Z(X)  for (O) pure water and ((3) mixture flow with Fo = Fore = 6.17, definition 
of shock front, (b) breaking front for strong shock, (c) compact  front for weak shock. 
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Figure 5. Shock front 2(~f) for 0 = (a) 0.065, (b) 0.096, (c) 0.185, (d) 0.345 and Fo = (A) 4, (O)  5, ( A )  

6, (111) 7 and ( 0 )  8. ( ) ?=0.75, ( . . . .  ) ? = I. 

4. EXPERIMENTAL RESULTS 

The experimental verification of  the previous results was conducted in a 500 mm wide rectangular 
channel. The transition from the pressurized pipe to the open channel flow involved a jet-box, i.e. 
an element containing diffusors and flow straighteners with an approach flow of  predetermined 
height ho up to 100 mm of  accuracy ___ 0.5 mm. The quality of the approach flow was excellent both 
in terms of  uniformity and disturbances. Based on previous experimentation (Reinauer 1995) an 
approach flow depth of  ho = 50 mm was chosen to inhibit scale effects. Because the significance 
of  the shock number was known from earlier analysis, only two deflection angles 0 = 0.096, and 
0 = 0.186 were set, and So was varied by increasing Fo, from 4.07 to 9.42. 

Air was added 5 m upstream from the jet-box to the pipe, and turbulence diffused it over the 
entire pipe section to result in a homogeneous bubbly liquid. The air discharge Qa was determined 
with a WISAG 2000 air meter, connected to a pressure cell to +2.5%. The water discharge was 
metered with an Inductive Discharge Measurement (IDM) device to + 1.5%, or 1 1 s -  ~, whichever 
is larger. At the approach section of  the channel, the air and water discharges, and the mixture 
flow depth horn were thus known, and the mixture shock number Sore could be computed. The 
bottom slope of  the channel was adjusted to l0 ° such that there was nearly no acceleration nor 
deceleration of  the flow, and the friction slope was compensated for by the bot tom slope, as 
previously assumed for our simplified model (Reinauer and Hager 1996). 

Shock height 

The mean air concentration C as defined in [1] was varied between 0 and 0.37 (37%), and mixture 
shock numbers Sore between 0.4 and 1.5 were considered. Figure 3(a) shows the shock height ratio 
Ym = h~m/hom as a function of  Sore and indicates perfect similarity for all runs. Also plotted is the 
zero-order approximation [15] and the relative wave height as obtained by Reinauer (1995) for 
water flow alone 
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so) 1,71 
Note that the first approximation of[17] is Y = 1 + x/2S,,, in agreement with [15] for mixture flow. 
The data are located somewhat below [17] because the deaeration process along the shockfront. 
In the experiments air was added by the approach pipe, but the velocity of flow (up to 5 ms ~) 
was too small for surface aeration to occur. 

Figure 3(b) shows a conventional plot Ym(So) and indicates a considerable scatter of data when 
using the shock number So = OF,, instead of Sool = OF .... for mixture flow. The novel approach 
accounts for the two-phase flow in a simple and effective manner, therefore. 

The geometry of the shockfront was observed for a selected run, where 0 = 0.096, Q,, = 56.4 1 s 
and Fo = 6.17. For water flow alone (C = 0) the approach flow depth was ho = 32.4 mm, for 
mixture flow with C = 0.325, the discharge was 70 l/s and the mixture flow depth was determined 
from [2] to honl = 50 mm and F,,m = 6.17 also. It is seen from figure 4(a) that the shock fronts match 
almost exactly, and that [14] is a simple extension for the shock angle. 

Shock .front 

When comparing the shock angle from figure 4(a) with [14] a systematic deviation may be stated. 
This is not only due to the neglect of  higher order terms but also because of  curvature effects. In 
order to define a shock front more exactly, additional experiments in a horizontal smooth channel 
were conducted, where 0 = 0.065, 0.096, 0.185 and 0.345, and Fo = 4-8 with increments of 1. The 
approach flow depth was ho = 50 mm throughout, and pure water flow was used because of 
increased accuracy in defining the front geometry. Based on previous work by Schwalt & Hager 
(1992) where the shock surface geometry was studied, we examined the shock front geometry here. 

o) b) 
Figure  6. Overal l  view o f  shockwave  for S~, = S,,~ = 6.17, (a) mixture  and (b) wate r  flow. 
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Figure 7. Details of shockwaves, (a) mixture and (b) water flow. 

Two cases must be distinguished (figure 4(b, c)): For  small shock number, the front remains 
compact  and may easaily be defined. For  larger shock number, a surface roller is formed as for 
a classical hydraulic jump. The fluid coming transversally onto the front is able to "clear" the roller 
flow, however, and the extension of the surface roller in a breaking shock is much smaller than 
for a corresponding hydraulic jump. 

Based on a coordinate system (£, :?) as defined in figure 1, with origin at the deflection point 
O and directed along the deflected wall, one may plot the relative shock front Z(X), where 

= x/(hoFo) is a so-called Rouse coordinate, and Z = g/ho (Hager 1992). Figure 5 shows that for 
a specific deflection angle 0, the data for various Froude numbers Fo are similar. Also the data 
for various 0 are scattering around a straight curve 

7 [18] f l - O -  Fo 

where 7 = 0.75. Further, the theoretical curve [14] with 7 = 1 is plotted, and this shock angle is 
seen to be too large, although the data approach the dotted line for large ~'. This is due to the 
wave breaking phenomenon mentioned previously, starting at about  ~" = 4, provided Y ~> 2. The 
important  feature of  figure 5 is that, for both pure water and mixture flow, the shock front may 
be expressed from [18] as 

0.75 
O'm = (tim/0) ~- 1 "-~ So--~ ' [19] 

Accordingly, the shock angle ratio depends exclusively on the mixture shock number,  as do all other 
properties of  shock flow. 

Photographs 

Photographs were made to allow a comparison between aerated and non-aerated flows across 
a shock. The hydraulic conditions as stated previously were taken, i.e. Fo = Fore = 6.17, and 
0 -- 0.096 such that So = Sore = 0.60. Figure 6 refers to a view against the flow and one may see 
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a well-defined front for the pure water flow, whereas the mixture flow has a less sharp front 
geometry, due to the high air concentration. The pressure at the front has a strong gradient, and 
is not hydrostatic. In the upstream front portion, there is an overpressure due to streamline 
curvature with center above the flow (figure 4(c)) and vice versa slightly downstream. The air 
bubbles are thus first lifted due to increased buoyancy and escape into the atmosphere. The shock 
front is thus perfectly traced by air bubbles, and the air concentration beyond the front is strongly 
reduced. Tracing the pattern of  a supercritical flow is thus simply achieved by adding some air to 
the approach flow. 

A detail of the shockfront in the direction of  flow is seen in figure 7, both for mixture and 
pure water flows. Note the abrupt deflection of surface streamlines across the front and the 
step increase of flow depth. The pattern of  streamlines are visible by long time exposure of 
1/30 s. 

Tailwater views from the shockwaves are provided by figure 8. In Figure 8(a) the effect of 
deaeration across a shock is highlighted, whereas figure 8(b) reveals the initial curvature of shock 
front, away from the point of deflection. One may also see the step increase of flow and the nearly 
constant wall flow depth, as determined with [15]. Just downstream of  the deflection point O, the 
flow is unable to react immediately to the deflection in the plan view, and there is a superelevation 
along the wall, therefore (Hager et al. 1994). The lateral expansion of flow is confined to the zone 
downstream of  the superelevation, as is also recognized from figure 5. 

Figure 8. Tailwater views of shockwave. (a) mixture and (b) water flow. 
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5. CONCLUSIONS 

The mechanism of air-water flow across an abrupt wall deflection is studied. The 2D approach 
demonstrates that the relations as derived for one-phase flow may be expanded to two-phase flow 
provided mixture quantities instead of pure water quantities are accounted for. This concept may 
be expanded for arbitrary supercritical flows, because of the relative insignificance of pressure forces 
when compared to the inertial forces in the approach flow. 

The theoretical approach was verified with selected experiments in a horizontal and a sloping 
smooth rectangular channel. It was found that the shock fronts are identical for equal mixture shock 
numbers. Also the geometry of shock fronts was determined in pure water flows. The concept of shock 
number was verified for both mixture and water flows, and identified as the governing flow parameter. 

The findings were documented with selected photographs. These indicate that a shock front can 
be considered as a localized deaerator, and that shock fronts clearly trace the flow pattern when 
adding air to the approach flow. 
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